
1

Developer Manual
ChatVUE

Authors: Thomas Hansknecht, Noah Davis, Scott Conwell,
Jiaqi Liu

Sponsored By Nicholas Edwards

2

Table of Contents
1.1 Overview........…………………………….......…………………………….. 4
1.2 Set the Dependencies.…………………………….………………………. 4
1.3 Retrieving the Project.…………………………….………………………...5
1.4 Setting up Visual Studio.………………………….………………………...7
2. Developing for Installers.…………………..……….………………………...9

2.1 Windows Installer.………………………….….……………………...9
2.1.1 Overview.……………………………………………………...9
2.1.2 Configuring Visual Studio…………….………...…………...9
2.1.3 Establishing Build Properties…………….…….………….12
2.1.4 Changing specific variables…………….………...……….13
2.1.5 Changing the user Interface…………….…………..….....14
2.1.6 Customizing the Dependency Requirements…...……….21

2.2 Mac Installer………………………………...….………...………….22
2.2.1 Version 1 Installer…………….………...……………….….22

2.2.1.1 Creating the dmg file……….………...…………...23
2.2.1.2 Extra Applications used for install…..…………..25

2.2.2 Version 2 Installer…………….………...………….……….27
2.2.2.1 Creating the .pkg file………………......……….....28
2.2.2.2 Signing the Installer…………….……...………….29
2.2.2.3 The build command…………….……...………….30
2.2.2.4 The directory structure…………….…..………….31

2.2.2.4.1 The build files…………..……...………….32
2.2.2.4.2 The source files…………..…...………….33
2.2.2.4.3 The post install sequence……………….36

2.3 Linux Installer…………………………………..………...………….39
2.3.1 Red Hat Installer……………………....………...………….40

2.3.1.1 Configuring the RPM Build……………………….40
2.3.2 Debian Installer…………………….….………...………….43
2.3.3 Customizing Install Location…………….……..………….44

3. Developing for Chat UI……………………………..….………...………….45
3.1 Setting up the keyfiles………………………..………...…………...45
3.2 ChatUI Project………………………………………………………..46

3

3.3 Admin controls from UI……………………………………………...56
4. Key Server Admin…………….…………………………..……...………….56
5. Contributions…………….…………………………..……...………………..57
6. Extra Resources.…………………………………………………………….57

4

1.1 Overview
Welcome to ChatVUE! Before looking through this development

manual, you might find it useful to first look through the Spring 2021
manual, as it gives more details about the more fundamental parts of the
project, such as CORECryptography and CORENet. The main tasks that
we aimed to accomplish during our semester was to create an Installer for
all ChatVUE components, a GUI for connecting to Chat Servers and
sending and receiving messages, as well as a GUI for administering the
Key Server. While we made progress towards these goals, there is still
plenty of work to be done before they are finished.

1.2 Set the Dependencies

This project uses .NET Core 5.0. It also uses the following NuGet
packages:

● CliWrap 3.3.0 (https://www.nuget.org/packages/CliWrap/3.3.0)
● Microsoft.Win32.Registry 5.0.0

(https://www.nuget.org/packages/Microsoft.Win32.Registry/5.0.0)
● System.Management 5.0.0

(https://www.nuget.org/packages/System.Management/5.0.0)

The test suite code uses the following NuGet packages:

● coverlet.collector 1.3.0
(https://www.nuget.org/packages/coverlet.collector/1.3.0)

● Microsoft.NET.Test.Sdk 16.7.1
(https://www.nuget.org/packages/Microsoft.NET.Test.Sdk/16.7.1)

● xunit 2.4.1 (https://www.nuget.org/packages/xunit/2.4.1)
● xunit.runner.visualstudio 2.4.3

(https://www.nuget.org/packages/xunit.runner.visualstudio/2.4.3)

https://www.nuget.org/packages/CliWrap/3.3.0
https://www.nuget.org/packages/Microsoft.Win32.Registry/5.0.0
https://www.nuget.org/packages/System.Management/5.0.0
https://www.nuget.org/packages/coverlet.collector/1.3.0
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk/16.7.1
https://www.nuget.org/packages/xunit/2.4.1
https://www.nuget.org/packages/xunit.runner.visualstudio/2.4.3

5

1.3 Retrieving the Project
The ChatVUEClient Github repository is the main way to develop for

this project. There should be a zip of the project on pCloud with our final
commits if anything goes awry with Github. The project can be cloned from
Github using the instructions shown in the README. As of the end of our
tenure, there are three different branches that contain the totality of the
work that we have done this semester. The Key Server admin work is
present in the scooter branch, Installer work is present in avaloniaUI, and
the work on optimizer keys, chat gui, and fingerprinting are present in the
Optimizer-Code branch. The master branch includes the final code
submitted by the Spring 2021 group.

To clone the repository simply visit the Git-Hub Repository which can be
found at https://github.com/edwanic/ChatVUE-Client
From there clone the appropriate branch which can be done with the -b
flag. For instance if we want to clone the branch avaloniaUI then we will
use the command
$ git clone https://github.com/edwanic/ChatVUE-Client -b avaloniaUI

Note: Permission will be needed to access and modify this private Git-Hub
Repository.

With the Git-Hub repository it’s easy to see the changes made to the code
and view new code added by the previous teams in branches.

Layout of the Git-Hub Location

https://github.com/edwanic/ChatVUE-Client
https://github.com/edwanic/ChatVUE-Client

6

There are certain parts of the Project mainly the Mac Installer 1 dmg file in
addition to several installer scripting files that are not found on the Git-Hub
repository linked above. To access the remaining files please visit the
PCloud file location that has been set up by Nicholas Edwards.

A backup of the Git-Hub repository is also available in case anything
happens to the Git-Hub repository. The backup Git-Hub repository and all
other Fall 2021 files can be found in the PCloud under Auburn Class
10/Team Resources/Shared Team Work Space/Fall 2021/.

7

In addition the PCloud location contains Installer Demo files which contain
already developed installers.

Layout of the PCloud file location

1.4 Setting up Visual Studio
Visual Studio is the preferred IDE for development of this project. To

work on the ChatUI GUI the Avalonia for Visual Studio extension is needed
from the marketplace. To work on Windows Installer the Microsoft Visual
Studio Installer Projects extension is needed from the marketplace. The
additional Visual Studio set up requirements for Windows Installer
development are discussed in Chapter 2.1.2.

To develop for the ChatUI there is a visual studio project called
ChatUI.csproj. Since ChatUI.csproj is dependent on the ChatVUE.sln
project it is recommended to develop the ChatUI from the ChatVUE.sln
visual studio project.

8

Note: In the event the ChatUI project does not show up under the
ChatVUE.sln simply add the ChatUI.csproj to the solutions under the
ChatUI project.

To install the Avalonia extension within visual studio simply launch visual
studio then click Extensions from the toolbar followed by Manage
Extensions.

Finally search for Avalonia for Visual Studio and install it to Visual Studio.

9

2 Developing For Installers
This project has installer applications to help install the needed
dependencies, build all project files and assist the user in making the
server and client applications functional. The installation process in the
beginning is different for every OS. Once dependencies, ChatVUE files
have been placed in the appropriate directories, and shortcut applications
are created the install process between Mac and Windows becomes the
same as we transition to the AvaloniaUI for the rest of the install which is
made exclusively for assisting users and admins in setting up, managing,
and connecting to servers.

2.1 Windows Installer

2.1.1 Overview
For Windows the installer is built as an msi file to be easily installable on
Windows. The optional shortcuts and server components which are given
to the user as optional additions are only visual at this time and do not
currently interact with the backend components

The windows installer works by building all of the project files specified in
the folders of the (ChatClient,ChatServer,ChatUI, and
KeyServer,InstallerInterface) This process is done automatically by the
installer and no scripting needs to be done by another application.

2.1.2 Configuring Visual Studio
To develop for the Windows Installer there is a visual studio project called
ChatVUE Installer.sln

10

Since ChatVUE Installer.sln was created using a visual studio extension
this extension will need to be installed to develop and build the ChatVUE
Installer application. To install the extension within visual studio simply
launch visual studio then click Extensions from the toolbar followed by
Manage Extensions.

Finally search for Microsoft Visual Studio Installer Projects and install it to
Visual Studio.

11

After installing the extension you are now able to develop and build the
installer. Simply launch the ChatVUE Installer.sln and under the main
solution right click (secondary click) and then select build/rebuild Solution.

Note: It sometimes works to simply build the ChatVUE Installer solution

12

(The final solution) but this is risky and often causes compilation errors. To
ensure the installer builds successfully it is best to build the entire solution
using the process shown above.

2.1.3 Establishing Build Properties
The majority of the build properties are accessed by right clicking
(secondary clicking) the ChatVUE Installer solution. From here click on the
Properties option. Next CLick on the Configuration Manager. Afterwards
there are several different options for changing/updating the build
properties including changing CPU configurations, deployment options, as
well as specifying Debug/Release Properties.

A more custom way of affecting the build properties is by making manual
changes to the ChatVUE Installer.vdproj file which can be found at

13

ChatVUE-Client/InstallerApplication/InstallerV0.2/setup FIles/ChatVUE
Installer/ChatVUE Installer.

2.1.4 Changing specific variables
To change specific variable the developer will need to make changes to the
ChatVUE Installer.vdproj file which can be found at
ChatVUE-Client/InstallerApplication/InstallerV0.2/setup FIles/ChatVUE
Installer/ChatVUE Installer. See 2.1.3 for more details. Within the ChatVUE
Installer.vdproj file developers can change any number of variables from
the Company/Manufacturer name of the installer. Changing the text that
displays in the Installer, Changing build properties, and a lot more.

Warning: When making changes to the .vdproj file the developer needs to
be careful as the visual studio solution will not make changes to this file but
the project does rely on it. Thus if the developer breaks the file the entire
installer solution will be broken as well so it is imperative to either make a
backup of the .vdproj file or be careful when making changes to it.

As an example we want to change the Product Name and Manufacturer.
We can easily do this in the .vdproj file by changing the Variable
ProductName as well as the Variable Manufacturer.

14

2.1.5 Changing the user Interface
To make changes to the user interface we use visual studio or the .vdproj
file. See 2.1.3 for more details on the .vdproj file. With the visual studio
implementation we use the User Interface menu. Simply right click
(secondary click) on the ChatVUE Installer solution and click User
Interface to customize the UI that is present in the Installer interface.

15

From the User Interface menu elements have different properties that can
be used. Such as windows having TItles, body text, etc. To view the
properties of a particular element simply right click (secondary) click on an
element and select Properties Window on that element. To add new
elements to the user interface simply right click (secondary click) on the
Start element

Note: There are two separate Start elements. One is for the normal installer
while the other is for administrative only installs. The majority of attention
has gone towards building the Regular Install since this is the Install that
will appear to a normal user.

To change the graphics in the User Interface one can look at the properties
Window of a given page and make changes to the BannerBitMap. The
exact size of the Banner bitmap needs to be 500x70 pixels where 500 is
the Width and 70 is the Height. The Banner bitmap also needs to be in a
.jpg formula as png does not seem to work here.

Currently the image graphics for the Windows installer are located at:
ChatVUE-Client/InstallerApplication/Installerv0.1/AvaloniaApplication1
/images

16

As an example here are the properties of the current built Checkboxes (A)
window

17

In addition to the Visual Studio Installer there is a post install sequence
which is known as the AvaloniaApplication1. When Examining the
ChatVUE Installer.sln file several of the solutions will be the Installerv0.1
folder which is found in the InstallerApplication/Installerv0.1 directory.

AvaloniaApplication1 is a misleading folder as it actually contains the
ServerComponentsInstall project which is the UI for server based installs
after all of the project files are built and the initial install is complete. Similar
to ExtraHelpInstall the ServerComponentsInstall project is simply help
documentation to advise admins on future steps for getting their system up
and running with the ChatVUE and KeyServer projects. Currently there is

18

no backend attached to this project and it is strictly a visual application that
will launch as a commit application (meaning when the installer is run the
ServerComponentsInstall application will run during the install) The install
process will not complete until all windows of the ServerComponentsInstall
application are closed.

ChatVueDesktopInstaller is a folder that is again not currently in use by
the installer. One of the ideas for this folder is to have it store the actual
installer msi files. However, the folder current contains nothing except to
blank Debug and Release folders.

ExtraHelpInstall project is the UI for client based installs after all of the
project files are built and the initial install is complete. Currently the
ExtraHelpInstall project is a Avalonia UI that simply gives help
documentation to advise users on future steps for getting their system up
and running. Currently there is no backend attached to this project and it is
strictly a visual application that will launch as a commit application
(meaning when the installer is run the ExtraHelpInstall application will run
during the install) The install process will not complete until all windows of
the ExtraHelpInstall application are closed.

To add or remove projects from the user interface one can use visual studio
and after right clicking (secondary clicking) the ChatVUE Installer hovering
the mouse over View followed by clicking on custom actions. From here we
can add custom scripts on entire projects to be displayed during the
install/rollback/uninstall process

The Install folder will display/run the items put here after the install is
finished

19

The Commit folder will display/run the items put here during the install
process.
It is worth noting that with Commit the displayed/run items must execute
correctly and not terminate with an error. If a Commit item is prematurely
terminated or ends with an error the install will be reset and the install will
be canceled while prompting an error message to the user.

The Rollback folder will display/run the items put here whenever the user
tries to Rollback/Modify the install

The Uninstall folder will display/run the items put here whenever the user
tries to uninstall an already installed installation of ChatVUE.
It is worth noting that similar to Commit the uninstall will be prematurely
terminated and canceled if an item put here does not exit normally.
Currently the way the Prevent Uninstall button works during the Uninstall
sequence is that when the user clicks that button the avalonia application
UninstallBye terminates on an System.Environment.Exit(1); which returns
an abnormal exit thus the uninstall sequence fails and the uninstall is
terminated as a result.

2.1.6 Customizing the User File Structure
The file structure that is created on the users system can be customized in
visual studio. Simply right click (secondary click) on the ChatVUE Installer
solution. Then hover the mouse over the View button. Finally click on the
File System. Currently the File structure is divided into several folders.

20

Application Folder specifies what files are placed in the Users program
Files directory. Depending on the Architecture this could be Program Files
x86 or simply Program Files (for 64 bit installs) The way this structure is set
up currently is that all the project solutions are placed in their respective
folders. For example to store the files necessary to install the ChatClient
solution we have a folder named ChatClient. Within that folder we have an
item called Publish items from ChatClient which as the name suggests
builds the project solution and only puts the published items onto the users
system.

To publish items of a solution simply open or create any folder and from
within that folder right click (secondary click) then hover the mouse over
add. Finally select Project output. Now the developer is presented with the
list of options and a list of available projects the installer has access to. The
developer can then select the project solution that they would like to add to
the installer application.

Note: To add solutions to this list one simply needs to add the desired
solution they have to the Solution Explorer of the main Installer application
project. Now the developer can perform the options listed below with their
newly inserted project.

21

2.1.7 Customizing the Dependency Requirements
Before the installer runs it checks that the user has the appropriate .NET
5.0 framework installed to their system. When the user does not have .NET
5.0 framework installed the installer will terminate and prompt the user to
install the appropriate version of .NET 5.0.

Customizing the dependencies is done in visual studio using the Launch
conditions menu. Simply right click (secondary click) on the ChatVUE
Installer solution and click Launch conditions to customize the
dependencies that are forced to be installed before ChatVUE can be
installed.

22

License Agreement folder:
Contains the TunnelVue License files (Not here currently) During the install
a license agreement is required to be accepted by the users. This license
agreement file will be stored in this folder location and should be called
LicenseAgreement.rtf

User’s Desktop, User’s Programs Menu folder: (Files that are placed
in user’s directories)
Specifies what shortcut files to create. Currently the Chat UI shortcut is
sent to both the user’s desktop as well as the user’s programs menu
location.

Uninstall Process
The uninstaller is built into the install application. If the user runs the
installer while ChatVUE is already installed to their system then the user
will be asked if they want to repair or remove ChatVUE on their system.

2.2 Mac Installer

2.2.1 Version 1 Installer
For Mac, the original installer is built in a dmg file. Currently the dmg file is
large at around 5GB. Compression is recommended here. The dmg file can
be compressed to around 500 MB but it seems to compress a dmg you
have to create a brand new copy hence adding an excess of storage to
store any additional files that need to be added in the future. The Mac
installer consists of three main components. The dmg file, application files,
and scripting files.

23

2.2.1.1 Creating the dmg file
The dmg file is made to be visually appealing and informative to the user.
The dmg file has a shortcut to the applications folder which is where the
ChatVue files need to be placed.There are three applications the user is
presented with for the install. The names of the applications are meant to
be informative and easy for the user to understand. All three applications
were written using Apple automator combined with shell scripting.

To create a dmg file open the Disk Utility application. From there in the top
menu click on File. Next hover the mouse over New Image. Finally select
Blank Image. Adjust the properties as needed to create the appropriate
dmg. The properties used to create the current developed dmg are the
following aside from the Size property.

24

Dmg supposedly offer support to lock the dmg files so that when a user
receives it they can not modify any of the properties but this implementation
does not exist currently

25

2.2.1.2 Extra Applications used for install

DependencyInstaller.app (automator application)
This application when executed downloads the .NET 5.0 sdk for the user to
install then it runs the .NET 5.0 sdk installer automatically and minimizes all
other windows so the process is more obvious to the user. The .NET 5.0
sdk is grabbed from Microsoft servers and the normal .NET 5.0 sdk installer
is presented to the user which was created by Microsoft.

ChatVUE_Installer.app (automator application)
This application when executed will first confirm with the user that .NET 5.0
sdk is installed. After this confirmation the application automatically runs
the DotnetPublish script. There is a check in place to ensure the user has
the shell open. If the user does not have a shell window open the
DotnetPublish script will automatically open a new shell window. From
there the script will build all of the .NET projects including
(ChatClient,ChatServer,ChatUI, and KeyServer). The projects files are built
using the following command:

$ dotnet publish -r osx-x64

Currently there is no visual process to explain what is happening to the
user during the .NET project files build process . This feature needs to be
added otherwise the user will be either unaware or unsure of what is

26

happening. For testing and debugging purposes I have made the shell
window visible but idealing there is a progress bar with details explaining to
the user the current tasks being performed and the shell window is hidden
in the background to not intimidate the user. During the Install the user has
the option of creating a desktop and launchpad shortcut to the ChatUI
application. Without a shortcut the user will need to manually run the
ChatUI dll file which is located in
/Applications/ChatVUE-Client/ChatUI/bin/(Debug or
release)/net5.0/osx-x64/ChatUI
Since this directory is hard to find the user is warned of the difficulties when
they choose to not add shortcuts. If shortcuts are made the user is given
the option of opening the ChatUI at that moment which is asked as a
question to the user.

ChatVUE UnInstaller.app (automator application)
This application when executed will send a confirmation message to the
user to make sure that they want to uninstall ChatVUE from their system. If
the user wants to, this application will first display a notification telling the
user to wait for the uninstall process to complete. Then the application will
run several apple scripts that first remove all ChatVUE files from the users
system and then finally remove all shortcuts that were added including any
desktop and launchpad shortcuts. After the process completes the user will
get a notification informing them that the files and applications were deleted
successfully.

27

ChatClientUI.app (automator app)
This application serves as an application link to the ChatUI dll file. Since
the ChatUI dll file is not executable except by using shell we use an
automator application to link to and open the ChatUI dll file. This application
is the one that is placed in the Mac launcher and desktop.

ChatUI_Shortcut (Shell script)
This script serves as a shell link to the ChatUI dll file. Since the ChatUI dll
file is so difficult to find, this script can be placed in the main directory of
ChatVUE so the user can easily run the ChatUI dll file directly using a shell
window.

2.2.2 Version 2 Installer

For the version 2 Mac installer it is constructed in the folder labeled
ChatVUE-Client/InstallerApplication/Mac Installer/macos-installer-builder.
The template for the macos-installer-builder was created by Kosala
Sananthana who has a blog on the code he wrote which can be found at
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-
application-34a11dd08744

There is also a github repository for the installer template which can be
found at https://github.com/KosalaHerath/macos-installer-builder

https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744
https://github.com/KosalaHerath/macos-installer-builder

28

The basic idea is that we use Apple’s .pkg builder through the bash
command line while the scripting that Kosala has done streamlines the
process. The current implementation has been heavily modified to include
the needed ChatVUE files and the interface has been heavily modified as
well to use TunnelVUE graphics in addition to custom pages.

Warning: The installer does not build inside of the ChatVUE-Client/…
directory. To actually build the installer the macos-installer-builder folder
needs to be placed in its own directory. It was found that the Documents
directory works here. Thus putting the macos-installer-builder into the
~/$USER/Documents folder will suffice and will allow the build command to
function. The $USER is simply a bash variable that means the current
User’s name.

2.2.2.1 Creating the .pkg file
First navigate the macos-installer-builder/macOS-x64 folder. Next open the
terminal at this location and type the command

29

$ bash build-macos-x64.sh ChatVUE 0.0.1
Note: You may need appropriate permissions to run this shell script. To
allow executing of the script type in terminal/bash
$ chmod build-macos-x64.sh u+x
Using this command we allow the user of the system to execute the script
without needing to be the root user.

After running the build-macos-x64.sh script with the above parameters of
ChatVUE and 0.0.1 then answering the questions asked during the build
the developer should be shown a screen similar to the one below saying
that the build was successful.

After the build is complete the developer can find the resulting .pkg file at
macOs-x64/target/pkg as well as the template .pkg file at
macOs-x64/target/package

2.2.2.2 Signing the Installer
During the build process at step 2 the developer will be asked if they want
to sign the installer. The question will appear similar to the following image:

30

The developer can answer the question by (pressing the n key for no or the
y key for yes in the terminal/bash window followed by the enter key) More
documentation regarding why and what signing the installer will do can be
found on Kosala Sananthana’s blog which can be found here:
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-
application-34a11dd08744

The main purpose of signing the installer will be to make the installer
appear as trusted on the user’s computer. However not signing the installer
appears fine and at worst will give more access permission warnings when
the user installs ChatVUE to their system. If the developer wants to sign the
.pkg file they will need an Apple Developer Certificate.

2.2.2.3 The build command
Let's explain exactly what the build command is and what it does. The
exact build command is located in the commandToBuildHere file which can
be found at ChatVUE-Client/Installer Application/Mac
Installer/macos-installer-builder/.
The actual command is:
$ bash build-macos-x64.sh ChatVUE 0.0.1
The bash specifies that we want to run the command under the bash
language.

https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744

31

The build-macos-x64.sh is the shell script we use to build the installer
.pkg file.
The ChatVUE specifies the name of the installer and the output name it will
be saved as.
The 0.0.1 specifies the version of the install.

Note: ChatVUE as the directory name and version 0.0.1 as the version
number are currently expected during scripting. If a developer wants to
change these values then searching for anytime 0.0.1 as well as ChatVUE
is used in all of the .app scripting files will be necessary as these values
need to be changed to allow for a different directory structure. Currently
there are global variables that specify the name and version number in the
postinstall script which is found at
macos-installer-builder/macOS-x64/darwin/scripts but these global
variables are not specified in any of the .app files located in the
macos-installer-builder/macOS-x64/application folder. So all .app files at
this location will need to be updated with the appropriate directory values
as needed.

2.2.2.4 The directory structure
Let's discuss the directory structure of the macos-installer-builder. First
navigate to the macos-installer-builder folder. Next we want to make sure
all of our files are present. Let's examine the directory structure here.

32

LICENSE - contains the Apache License
README.md - contains more info regarding the template and how it
works. Currently this README.md is the readme that Kosala originally
created and simply contains references that were used and a simple
definition of the git-hub project he created as well as encouraging giving
suggestions and feedback on improving the installer.

macOS-x64 - This folder is the most important as it contains all of the
needed files during and after the installation process

2.2.2.4.1 The build files
macOs-x64/build-macos-x64.sh - This is the shell script that actually
creates the installer. Not much has been changed in this script when

33

compared with the original. However, making changes to this script will
fundamentally change how the installer is created and what features and
interface windows are added. This script also specifies the install directory.
Currently the directory is set to the Library folder under the /Library folder
which allows the Installer to install for all users of the system.

macOs-x64/commandToBuildHere - This file simply contains the bash …
command mentioned earlier to build and construct the installer. To use the
file one can simply cat into it from the terminal using $cat
commandToBuildHere or open the file in one's favorite text editor. The file is
exclusively used to help the developer remember what the actual build
command is so that the developer does not have to look up the command
all the time.

2.2.2.4.2 The source files
macOs-x64/application - This folder contains all of the .app files as well
as the project solution files “ie. the source code” which is placed inside of
the ChatVUE-Client folder and this folder contains all the needed source
code to build using .NET which is placed within the application folder. Let's
take a closer look at what this directory should have inside.

34

macOs-x64/darwin - This folder contains all of the necessary parts that
create the user interface as well as provides the process used after the
installation. This folder also decides on dependency requirements as well
as an after install confirmation. Lets dig deeper into these files and folders
and what they do/are.

35

macOs-x64/darwin/Distribution - This file sets install requirements such
as the required MacOS version as well as handling the installation
verification. This verification validates that files are placed in the
appropriate place and that all conditions were met during the install
process. If the developer wants to change the install location this file will
need to be modified otherwise the Distribution will search for files in the
Library folder and since it does not find them it assumes the install failed
and notifies the user.

In addition the Distribution file specifies the layout of the installer. To add or
remove interface elements to the installer this file needs to be modified.
The original file was created by Kosala

36

macOs-x64/darwin/Resources - This folder contains all graphical
elements present during and after the install. This folder also contains the
uninstall.sh script which was created by Kosala and has not been
implemented currently but provides a template for creating a shell based
uninstaller which could be looked into with future versions of the installer.
The TunnelVUE.iconset is what creates the application icon for the
ChatClientUI.app. To create and use inconset files refer to this blog created
by OWC Chris S:
https://eshop.macsales.com/blog/28492-create-your-own-custom-icons-in-1
0-7-5-or-later/

The .html files located at macOs-x64/darwin/Resources are the visual
pages that display during the install. As an example the welcome.html file is
what is displayed as the first page of the installer while the conclusion.html
is displayed as the final page of the installer and only displays after the
postinstall is marked as completed and after the Distribution determines
that all files and folders were correctly installed. The html files here seem to
only be grayscale models as adding colors and css properties to these files
does not currently work.

macOs-x64/darwin/Resources/LICENSE.txt is the actual license file that
is required to be read during the installation. To change or update the
license modify this file but keep the same name as LICENSE.txt

2.2.2.4.3 The post install sequence
macOs-x64/darwin/scripts - This folder contains the post install
instructions. Currently the only file present in the post install sequence is
the postinstall file. The postinstall file specifies the commands to run during
the scripting portion of the install. Currently the postinstall calls the .app
files to handle installing dependencies in addition to the scripting for
building and publishing .net solutions. Currently there is a bug with the
postinstall which is that the check for dotnet version does not work as shell
does not recognize the location for dotnet and thus the
dependencyinstaller.app will always be run during the post install

https://eshop.macsales.com/blog/28492-create-your-own-custom-icons-in-10-7-5-or-later/
https://eshop.macsales.com/blog/28492-create-your-own-custom-icons-in-10-7-5-or-later/

37

sequence. Another issue is that it was unknown how to make the post
install wait for the termination of the DotnetInstall.app thus the postinstall
simply waits a few minutes before concluding and saying the install was
successful. It is recommended that future developers improve this
postinstall process.

macOs-x64/target - This folder is essentially temporary as it is changed
every time the installer is built. Also, the folder can simply be empty before
the build process using the $bash… command discussed earlier and the
build process will remain identical either way. One way to think of the target
versus darwin is that the darwin is what is used to create the installer and
the target is the result after building the installer. Thus the two directories,
darwin and target, will share a similar structure as well as identical files.

**Be careful - It is easy to accidentally develop in the target folder as it
contains a similar directory structure and identical files as the dawin folder
after the installer is constructed. However, any changes and modifications
to this folder will be completely erased after a build. So it is best not to
touch this folder unless one is trying to retrieve the .pkg files.

38

macOs-x64/target/darwin - This folder contains the same files present in
the darwin under macOS-x64/darwin. However, the files here are
created/modified during the build process.

macOs-x64/target/darwinpkg - This folder contains the same source files
that are present in the application folder found at macOs-x64/application.
However, the files here are created/modified during the build process and
the directory structure here will match where the directories are placed on
the target’s (the person that uses the installer) machine.

macOs-x64/target/package - This folder will contain the unmodified
version of the installer. In this version no custom elements are displayed
and the installer is in the most basic form with the original instructions (It is
believed that Apple uses these instructions as the template) However, there
has been no testing done with this .pkg file and it is unknown as to exactly
why it exists or what it does. This .pkg file is automatically generated after
building the installer with the $bash… command mentioned earlier. The
macOs-x64/target/package installer will appear similar to:

39

macOs-x64/target/pkg - This folder will contain the modified version of the
installer. In this version all the custom elements are displayed and the
installer behaves as intended. It is recommended to use the installer that is
created here and to simply discard the installer that is created in the
macOs-x64/target/package directory. The .pkg file here is automatically
generated after building the installer with the $bash… command mentioned
earlier.The macOs-x64/target/pkg installer will appear similar to:

2.3 Linux Installer
With the Linux OS there are multiple installers constructed for various Linux
distributions. Currently support is being made for Debian and RedHat
Linux. Neither package builder is working properly yet but the idea is to
have the installation completed through a .deb package for Debian systems
and a .rpm package for RedHat systems. Instructions should be added in
the package builder in case the user has issues or wants to build the
package manually. The package can be built manually by running the setup
file in shell. Both automatic and manual installs will rely on shell scripting.
Most Linux distributions come with shell functionality so relying on shell
functionality should not be an issue for the user but in case it would be a

40

good idea to provide tools in the package builder to assist the user with
adding shell functionality to their Linux system.

2.3.1 Red Hat Installer

The Red Hat Installer files are located at
ChatVUE-Client/InstallerApplication/Linux Installer/RedHat Install/

Currently the Linux Installer assumes the install location to be in the
~/$USER/Downloads directory which simply means the given user's
downloads directory and using $USER in the bash script makes the
address relative to the user that is using the system. For the current
installation process the installer copies the ChatVUE-Client folder in the
~/$USER/Documents location. If the folder ChatVUE-Client is not found in
this directory or the directory itself is not found the installer will terminate
and display helpful hints to the user as to what went wrong during the
install process.

2.3.1.1 Configuring the RPM Build
For rpm packages the directory is as follows:

The BUILD folder:
This folder includes all of the scripts that can be run during the build
process.

41

setup (Shell Script)
This script will automatically launch the dependency installer,
dotnet-install-Script.sh, and DotnetPublishScript script. This script also
requires the user to accept the license which is presented to the user
during the install process.

DependencyInstallScript (Shell Script)
This script first asks the user if they have .NET 5.0 sdk installed. When the
answer is yes this script will run dotnet-install-Script.sh. After the .NET
framework is created the DependencyInstallScript will locate the
appropriate .NET 5.0 sdk package from the Default system Repository to
install. The .NET 5.0 package selects the most recent version from
Microsoft Servers. After the runtime environment and .NET 5.0 sdk are
installed the DependencyInstallScript concludes.

dotnet-install-Script.sh (Shell Script)
This script was created by Microsoft to be an easy way of finding and
installing the necessary dependencies to install the dotnet framework.

DotnetPublishScript (Shell Script)
This script navigates to the specified ChatVUE files location and builds the
necessary .NET projects including (ChatClient,ChatServer,ChatUI, and
KeyServer) The building is done using the command:
$ dotnet publish -r linux-x64 --self-contained false

UninstallScript (Shell Script)

It is unlikely the user will want to build the UninstallerScript to their system
as this will remove everything that was built previously but the Uninstaller
will be run if the install fails due to corruption. When corruption happens the
best strategy is to remove all files so the user has a fresh slate for running
the install again. If no fatal errors occur, the Uninstall script will not be run
during the build process. The main purpose of the UninstallScript is to
assist the user in removing ChatVUE from their system in the event the
user uses a custom install location or for whatever reason the default
package handler on Linux is unable to remove ChatVUE from the user’s
system.

42

The SOURCES folder:
This directory includes all of the source code and images that are used
during the install for either backgrounds or icon files.

The SPECS folder:
This directory contains user help documentation as well as the binary
execution instructions for the Linux system to follow when running the rpm
package. The binary execution instructions are in ChatClient.spec while the
user help documentation is in Instructions.txt

Sample Outputs from the shell console of running setup file

Error Handling of Linux Installation

If the user messes up the install by not following directions, such as not
specifying the correct location of the ChatVUE directory on their system
then a custom error message is generated informing the user of their
mistake as well as halting the install process so no files get corrupted or
placed in the wrong locations.

Sample error Output from the shell console of running setup file

43

2.3.2 Debian Installer

The Debian Installer files are located at
ChatVUE-Client/InstallerApplication/Linux Installer/Debian Install/

The debian installer is similar to the Red Hat installer in that it uses the
same files excluding the RPM build structure. However, the RPM Build files
are also in the Debian installer. Debian systems should use a .deb format
which is not currently implemented at this time. The main difference
between the Debian and Red Hat install is that the two different
distributions use different package managers which causes the syntax to
be slightly different in the scripting files depending on whether we are using
snap packages and apt for debian systems or we are using yum and dnf for
Red Hat systems. The Debian installer was tested using Ubuntu 18.04.
Currently the Debian installer has an issue in that installing the .net 5.0
using a snap package causes only the root to have access to .net 5.0

44

commands. Thus currently with the debian install root permissions are
required to both complete the install as well as open the application created
after the install process is complete.

One solution here is to update the project to support .net 6.0 as this newer
version does not require root permissions to use after being downloaded as
a snap package. The main issue though is that .net 6.0 is currently not
supported with the ChatVUE project solution. In addition, changing the
version of .net would mean needing to update the .net dependency
values on all platforms including Windows, Mac OS, as well as Linux
Installer applications

2.3.3 Customizing Install Location
The install location is not a global variable currently thus the files setup,
DependencyInstallScript, DotnetPublishScript, UninstallerScript, and
ChatUIShortcut.sh will all need to be modified with the appropriate install
and retrieval locations. Most of these files can be found in both the:
ChatVUE-Client/InstallerApplication/Linux Installer/RedHat Install as well as
ChatVUE-Client/InstallerApplication/Linux Installer/Debian Install
While the remaining files are found in
ChatVUE-Client/InstallerApplication/Linux Installer

Currently the installer (which is really just a bunch of scripts) expects the
install files to be located in the ~/Documents folder. If the folder
ChatVUE-Client is detected in this directory the install will continue
otherwise the install will terminate and explain to the user what went wrong
during the install. Currently the install directory is at ~/Downloads. Which
basically means in the current state the installer copies the ChatVUE-Client
folder from the documents folder and places it in the downloads folder.
After this process completes the installer builds the solution files and finally
creates desktop and launchpad shortcuts which is done in the script
DotnetPublishScript.

45

It is recommended to change these install and retrieval locations because
installing from documents folder to downloads folder is not ideal.
DotnetPublish creates the shortcut files at ~/.local/share/applications as
well as ~/Desktop and these shortcut files simply refer to the
ChatVUE-Client/InstallerApplication/'Linux Installer'/ChatUIShortcut.sh shell
script which is a script that executes the dll files needed to load the Chat UI
which is done using the dotnet 5 sdk. These dll files are generated earlier in
the build but while the DotnetPublishScript is running.

3 Developing for Chat UI
3.1 Setting up the keyfiles
One problem we had this semester was integrating optimizer code that Mr.
Edwards provided us in order for the KeyServer to quickly search for keys.
To generate license keys to be used by a client with the new optimizer
code, you need to run the ServerSetupConfiguration method in
COREKeyManager.cs within the CORECryptography project then place a
key in the ChatServer’s or ChatUI’s bin/Debug/net5.0 folder. You’ll also
need to change the code to accommodate the new filename as the
optimizer code uses different naming conventions than the ones that the
methods that read the keyfiles are searching for (in FileService.cs). So
either change the method in COREKeyManager.cs to match the naming
conventions of those methods or vice-versa. Once that’s been done, you
should be able to decrypt and brand keys once the correct passwords have
been given in the corresponding GUI. Additionally, in order to communicate
with a server from another network, the one running a ChatServer will
probably need to set up port forwarding on their network.

46

3.2 ChatUI Project

The new GUI is located in the ChatUI project of the avaloniaUI branch in
Github and the back-end is heavily based off of the ChatClient project that
preceded our group’s effort. The ChatUI project is written with the
AvaloniaUI MVVM framework, but we don’t really make much use of the
viewmodels in the project and do most of the data binding in each view’s
corresponding c# file. The Main Window and its corresponding c# file
contain the most integral code to the application. It contains a list of
ChatServices (which are used to communicate with ChatServers) and a list
of StackPanels to keep track of the messages that have been sent in each
ChatServer that has been connected to.

https://docs.avaloniaui.net/

47

In Visual Studio, there’s a convenient designer window that can be used to
design windows without always having to check how they look by
debugging.

48

In the constructor of a window class (or any other method), you can search
elements of the page by name and initialize the event listeners on the page
that handle actions the way you need them to. There are other ways to add
listeners (like through properties in the .axaml files or using reactive
elements in a viewmodel) but I’ve had the most success doing them this
way.

Next I’ll list each major component of the ChatUI project and give a brief
description of its purpose (though the description for the MainWindow may
not be so brief):

● The Events Folder: Contains 5 classes representing Event
Arguments that will be sent to the Client from the server:
ConnectionFailedEventArgs.cs, ConnectionSuccessEventArgs.cs,
DisconnectionEventArgs.cs, KeyReceivedEventArgs.cs, and
MessageReceivedEventArgs.cs. Each of these files are used to
create event handlers so that the GUI can react to messages sent
from a Server.

● Models.KeyFileModel: A class representing a KeyFile that allows us
to easily manipulate KeyFile data. Used to check if KeyFiles are
branded and to store the machine’s encrypted key as a byte array to
be used in various methods.

● ChatService.cs: This class contains all of the methods necessary for
a ChatClient to function. It contains the EventHandlers for the 5
events listed above as well as methods to validate user inputs when
they try to join a chat server, a method to create a TCP connection
with a KeyServer, and a method that sends users’ messages to a
ChatServer. It also contains an identifier so that we can switch

49

between ChatServices as needed.
● FileService.cs: Contains two methods: ReadKeyFile and

SaveKeyFile. They’re used to read and update the KeyFile stored on
the user’s machine.

● NetUtils.cs: Contains ResolveAddress method which helps us
convert string IP Address inputs into IPAddress objects so that we
can use the addresses to make TCP connections.

● Views/ViewModels: We currently have 8 Views in use to allow the
GUI to function but will eventually need to add more for the Admin
GUI and other functions. I’ll list the views below and explain what they
do.

MainWindow

The main window is a pretty basic looking page that uses grids to segment
the page into 3 main sections (I added the dotted grid lines to illustrate): the
navbar at the top, the chat room in the middle, and the message input bar
at the bottom.
The chat room is a ScrollViewer that contains a StackPanel that holds the
messages that are sent. Messages are children of the main StackPanel
and are also StackPanels themselves that contain TextBlocks. This allows
us to easily append messages to the chat room programmatically and
maintain separation between each message. With each ChatServer
connection, a StackPanel containing the messages sent in the server since

50

the user has connected is stored in the MainWindow’s c# file and is
updated even when the server isn’t being displayed.
The navbar contains buttons associated with a server that can be clicked to
switch between servers. The switch is done by searching the list of
StackPanels for one with the identifier that is passed to the code by the
button and replacing the content of the Scrollviewer with it. The green plus
button pulls up a dialog window that allows users to create a connection
with another server. Once this connection is created, another button is
added to the navbar for the server. The styling on this page is pretty crude
and will need to be improved but right now we’re mostly concerned with
getting this thing to function correctly. There will also need to be additional
visual components added for Server Admin functions and audio/video chat
once those are implemented.
The message input bar has a button on the right to handle file inputs and
messages can be sent by typing something in and clicking enter.
The c# file associated with this view contains all the event listeners and
other methods necessary for the above functions to work properly. It also
has listeners for messages from the ChatServer so that we can update the
chat logs of all the servers the user is connected to. In the future we’ll need
to give users the ability to disconnect from a server if they please, but we
have not implemented this function yet (though they can disconnect from
every server if they exit the application!).

JoinChatServerModal

51

This dialog window appears on startup of the application and when the user
clicks the add button on the navbar. It takes user input for the IPs needed
to connect to each server and an optional input of a title for the server. If
given, the title appears in the button on the navbar that is added once the
connection is made; otherwise, the button’s title defaults to the IP of the
ChatServer. The c# file for this dialog window validates the inputs with a
static method in the ChatService and notifies the user of any errors. If it’s
the first time the user’s machine has attempted a connection to this key
server (AKA their keyfile hasn’t been branded), then another dialog is
opened to receive the password needed to decrypt the key from the user.
After this or if the file has already been branded, a method from the
MainWindow is called to add the new connection and the dialog closes.

52

PasswordView

PasswordView is another dialog window that shows when a user is
connecting to a KeyServer for the first time. It takes the user’s password
input and uses it to decrypt their keyfile and make a connection to the
KeyServer. Once a connection is established, an event listener in the
MainWindow updates the key with the new one sent by the KeyServer.

UploadFileModal

53

The UploadFileModal pops up after a user has selected files from the file
explorer after clicking on the file icon button in the bottom right. The modal
has hidden input fields that store the path(s) of the selected files along with
a Textbox to add an additional optional message with the file.

54

Once the user has sent the file, this is what appears in the chat room. The
user can click on the Download button to save the file to their downloads
folder.

Work to be done on GUI
● Currently, the backend is in a bit of a state of disarray so the

avaloniaUI branch has a ChatUI that is basically a skeleton front-end
of the features needed for the application to function correctly. There
is a lot of commented code that would serve to connect it to the
backend and the server with some modification once the optimizer
code has been properly implemented. For example, in the
MainWindow.cs file, the AddConnection method only contains a
parameter for the title of the chatroom being added but has three
other params commented to the side and event listeners for the
ChatService commented within it. For this to work with the server,
you’ll need to uncomment those lines and move the code below it into
the OnConnectionSuccess method so that a room isn’t added to the
GUI and list of ChatServices until a connection has been successfully
established with the server.

● Another thing that needs to be finished is the file upload/download
functionality. Right now, when a file is uploaded it is not being
encrypted and sent to the server and is rather being stored in the bin
of the ChatUI project and being copied to the downloads folder of the

55

user (and this may only work on Windows). This was to serve as a
model for how it should actually work so I could model the front-end
since I couldn’t get the back-end to cooperate. What you need to do
is instead of sending the file to the bin on upload of the file, you need
to encrypt the file with a single key and send it to the server to be
stored in the Server’s database or in a folder (probably the db). Then,
when a ChatClient user clicks on the download button for the file, a
request needs to be sent to the server to decrypt and send the file
back to the client.

● We still don’t have identifiers for messages implemented, so you can’t
tell who is sending what. I wrote a basic window to take in user input
for an identifier called GetIdentifier.axaml and intended to use it to get
a user to enter their identifier the first time they open the application
but didn’t get around to it. Once you take the input, you will need to
store it somewhere (either on the client’s config file or in the
KeyServer db with its key). Then it can be used to identify who is
sending a message.

● Some work should be done to make the GUI prettier, to make it more
responsive to varying input/window sizes, and to add ChatVUE
branding similar to the way Thomas has done with the installers.

● We discussed adding audio/video chat this semester, but obviously
did not have the time to get to that.

56

3.3 Admin controls from UI

The AdminWindow currently contains these 3 functions. This window
should be implemented in the same way as the chat server windows,
where you can tab in and out of the admin window into another admin
window or chat window.

4. Key Server Admin
The Key Server directory holds the back end methods for performing admin
functions, as well as handling messages from the client. The server
handles admin message requests from the Server in KeyServerService.cs
where messages received from the client are handled. The client side,
which sends the admin messages is present in
ChatUI/Utilities/ChatService.cs. Any method that interacts with the Key
Server database is in KeyServerSQL.cs. The GUI for interfacing with the
Key Server is present in ChatUI/Views/AdminWindow.axaml. The GUI
needs to be integrated into the MainWindow as well as connected to the
chatService so it can send adminRequest messages to the Key Server.

57

5. Contributions
Thomas Hansknecht - (Header Page,Table Of Contents,Chapters 1.3-1.4,
2, 5, 6)

Jiaqi Liu - (Chapter 1)

Noah Davis - (Chapter 3.1-3.2)

Scott Conwell - (Chapters 3.3, 4)

6. Extra Resources
How to make a .exe file execute after installation of project using setup and
deployment project in c#

Connect to Server (Database Engine) - SQL Server Management Studio
(SSMS) - Microsoft Docs

Docker- Install containers for SQL Server on Linux - SQL Server - Microsoft
Docs

The Easiest Way to Build macOS Installer for Your Application - by Kosala
Sananthana - The Startup - Medium

bash - How to change the output color of echo in Linux - Stack Overflow
How to change the output color of echo in Linux

How to actually run dotnet project on Mac

Create Your Own Custom Icons in OS X 10.7.5 or Later

https://social.msdn.microsoft.com/Forums/windows/en-US/8df1dc89-44af-440d-b061-c94fcfb9e219/how-to-make-a-exe-file-execute-after-installation-of-project-using-setup-and-depoyment-project-in?forum=winforms
https://social.msdn.microsoft.com/Forums/windows/en-US/8df1dc89-44af-440d-b061-c94fcfb9e219/how-to-make-a-exe-file-execute-after-installation-of-project-using-setup-and-depoyment-project-in?forum=winforms
https://docs.microsoft.com/en-us/sql/ssms/f1-help/connect-to-server-database-engine?f1url=%3FappId%3DDev15IDEF1%26l%3Den-US%26k%3Dk(sql13.swb.connection.login.sqlserver.f1)&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/f1-help/connect-to-server-database-engine?f1url=%3FappId%3DDev15IDEF1%26l%3Den-US%26k%3Dk(sql13.swb.connection.login.sqlserver.f1)&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-ver15&pivots=cs1-bash
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-ver15&pivots=cs1-bash
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744
https://medium.com/swlh/the-easiest-way-to-build-macos-installer-for-your-application-34a11dd08744
https://stackoverflow.com/questions/5947742/how-to-change-the-output-color-of-echo-in-linux
https://stackoverflow.com/questions/5947742/how-to-change-the-output-color-of-echo-in-linux
https://docs.microsoft.com/en-us/dotnet/core/tutorials/publishing-with-visual-studio-mac
https://eshop.macsales.com/blog/28492-create-your-own-custom-icons-in-10-7-5-or-later/

58

applications - Open terminal via AppleScript - Ask Different

Building binary deb packages- a practical guide - Internal Pointers

Documentation To Install WSL (Windows Subsystem for Linux)

Application publishing - .NET - Microsoft Docs

KosalaHerath-macos-installer-builder- Generate macOS installers for your
applications and products from one command

How to create a Linux RPM package - Enable Sysadmin

How to create a new database in Microsoft SQL Server

Open Port Check Tool

ChatVUE Linux Install Demo

https://apple.stackexchange.com/questions/170602/open-terminal-via-applescript
https://www.internalpointers.com/post/build-binary-deb-package-practical-guide
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://github.com/KosalaHerath/macos-installer-builder
https://github.com/KosalaHerath/macos-installer-builder
https://www.redhat.com/sysadmin/create-rpm-package
https://www.gfi.com/support/products/kbid003379
https://www.yougetsignal.com/tools/open-ports/
https://www.youtube.com/watch?v=A9uynrGyqk0&feature=youtu.be

